Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1331322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487542

RESUMO

Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.


Assuntos
Neuroblastoma , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Bussulfano , Quimiocinas , Receptores de Quimiocinas
2.
Oncoimmunology ; 11(1): 2057012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371623

RESUMO

γδ T lymphocytes represent an emerging class of cellular immunotherapy with preclinical promise to treat cancer, notably neuroblastoma. The innate-like immune cell subset demonstrates inherent cytoxicity toward tumor cells independent of MHC recognition, enabling allogeneic administration of healthy donor-derived γδ T cell therapies. A current limitation is the substantial interindividual γδ T cell expansion variation among leukocyte collections. Overcoming this limitation will enable realization of the full potential of allogeneic γδ T-based cellular therapy. Here, we characterize γδ T cell expansions from healthy adult donors and observe that highly potent natural killer (NK) lymphocytes expand with γδ T cells under zoledronate and IL-2 stimulation. The presence of NK cells correlates with both the expansion potential of γδ T cells and the overall potency of the γδ T cell therapy. However, the potency of the cell therapy in combination with an antibody-based immunotherapeutic, dinutuximab, appears to be independent of γδ T/NK cell content both in vitro and in vivo, which minimizes the implication of interindividual expansion differences toward efficacy. Collectively, these studies highlight the utility of maintaining the NK cell population within expanded γδ T cell therapies and suggest a synergistic action of combined innate cell immunotherapy toward neuroblastoma.


Assuntos
Neuroblastoma , Receptores de Antígenos de Linfócitos T gama-delta , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia , Neuroblastoma/terapia
3.
Cryobiology ; 99: 78-87, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485898

RESUMO

Clinical applications of gamma delta (γδ) T cells have advanced from initial interest in expanding γδ T cells in vivo to the development of a manufacturing process for the ex vivo expansion. To develop an "off-the-shelf" allogeneic γδ T cell product, the cell manufacturing process must be optimized to include cryopreservation. It is known that cryopreservation can dramatically reduce viability of primary cells and other cell types after thawing, although the exact effects of cryopreservation on γδ T cell health and functionality have not yet been characterized. Our aim was to characterize the effects of a freeze/thaw cycle on γδ T cells and to develop an optimized protocol for cryopreservation. γδ T cells were expanded under serum-free conditions, using a good manufacturing practice (GMP) compliant protocol developed by our lab. We observed that cryopreservation reduced cell survival and increased the percentage of apoptotic cells, two measures that could not be improved through the use of 5 GMP compliant freezing media. The choice of thawing medium, specifically human albumin (HSA), improved γδ T cell viability and in addition, chromatin condensation prior to freezing increased cell viability after thawing, which could not be further improved with the use of a general caspase inhibitor. Finally, we found that cryopreserved cells had depolarized mitochondrial membranes and reduced cytotoxicity when tested against a range of leukemia cell lines. These studies provide a detailed analysis of the effects of cryopreservation on γδ T cells and provide methods for improving viability in the post-thaw period.


Assuntos
Cromatina , Criopreservação , Sobrevivência Celular , Criopreservação/métodos , Congelamento , Humanos , Albumina Sérica Humana , Linfócitos T
4.
Cytotherapy ; 23(1): 12-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168453

RESUMO

Engagement between the natural killer group 2, member D (NKG2D) receptor and its ligands is one of the main mechanisms used by immune cells to target stressed cells for cell death. NKG2D ligands are known markers of cellular stress and are often upregulated on tumor cells. Certain drugs can further increase NKG2D ligand levels, thereby making tumor cells more susceptible to immune cell detection and destruction. However, the effectiveness of this approach appears to be limited with drug treatment alone, possibly due to immune dysregulation in the setting of malignancies. We hypothesized that a more effective approach would be a combination of NKG2D ligand-inducing drugs, such as the proteasome inhibitor bortezomib, and ex vivo-expanded peripheral blood γδ T cells (i.e., Vγ9Vδ2 T cells). Acute myeloid leukemia (AML) is a high-risk hematologic malignancy, and treatment has shown limited benefit with the addition of bortezomib to standard chemotherapy regimens. Two AML cells lines, Nomo-1 and Kasumi-1, were treated with increasing concentrations of bortezomib, and changes in NKG2D ligand expression were measured. Bortezomib treatment significantly increased expression of the NKG2D ligand UL16 binding protein (ULBP) 2/5/6 in both cell lines. Vγ9Vδ2 T cells were expanded and isolated from peripheral blood of healthy donors to generate a final cellular product with a mean of 96% CD3+/γδ T-cell receptor-positive cells. Combination treatment of the AML cell lines with γδ T cells and bortezomib resulted in significantly greater cytotoxicity than γδ T cells alone, even at lower effector-to-target ratios. Based on the positive results against AML and the generalizable mechanism of this combination approach, it was also tested against T-cell acute lymphoblastic leukemia (T-ALL), another high-risk leukemia. Similarly, bortezomib increased ULBP 2/5/6 expression in T-ALL cell lines, Jurkat and MOLT-4 and improved the cytotoxicity of γδ T cells against each line. Collectively, these results show that bortezomib enhances γδ T-cell-mediated killing of both AML and T-ALL cells in part through increased NKG2D ligand-receptor interaction. Furthermore, proof-of-concept for the combination of ex vivo-expanded γδ T cells with stress ligand-inducing drugs as a therapeutic platform for high-risk leukemias is demonstrated.


Assuntos
Bortezomib/farmacologia , Citotoxicidade Imunológica , Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Bortezomib/administração & dosagem , Linhagem Celular Tumoral , Humanos , Linfócitos Intraepiteliais/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteostase/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Regulação para Cima
5.
Front Med (Lausanne) ; 7: 588453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282892

RESUMO

Gamma delta (γδ) T cells recently emerged as an attractive candidate for cancer immunotherapy treatments due to their inherent cytotoxicity against both hematological and solid tumors. Moreover, γδ T cells provide a platform for the development of allogeneic cell therapies, as they can recognize antigens independent of MHC recognition and without the requirement for a chimeric antigen receptor. However, γδ T cell adoptive cell therapy depends on ex vivo expansion to manufacture sufficient cell product numbers, which remains challenging and limited by inter-donor variability. In the current study, we characterize the differences in expansion of γδ T cells from various donors that expand (EX) and donors that fail to expand, i.e., non-expanders (NE). Further, we demonstrate that IL-21 can be used to increase the expansion potential of NE. In order to reduce the risk of graft vs. host disease (GVHD) induced by an allogeneic T cell product, αß T cell depletions must be considered due to the potential for HLA mismatch. Typically, αß T cell depletions are performed at the end of expansion, prior to infusion. We show that γδ T cell cultures can be successfully αß depleted on day 6 of expansion, providing a better environment for the γδ T cells to expand, and that the αß T cell population remains below clinically acceptable standards for T cell-depleted allogeneic stem cell products. Finally, we assess the potential for a mixed donor γδ T cell therapy and characterize the effects of cryopreservation on γδ T cells. Collectively, these studies support the development of an improved allogeneic γδ T cell product and suggest the possibility of using mixed donor γδ T cell immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...